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VI. On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells.
‘ By A. B. Basser, M.A., F.R.S.

Received December 9,—Read December 19, 1889.

1. TaE various theories of thin elastic shells which have hitherto been proposed have
been discussed by Mr. Love® in a recent memoir, and it appears that most, if not all of
them, depend upon the assumption. that the three stresses which are usually denoted
by R, 8, T are zero; but, as I have recently pointed out,! a very cursory examination
of the subject is sufficient to show that this assumption cannot be rigorously true. It
can, however, be proved that, when the external surfaces of a plane plate are not sub-
Jected to pressure or tangential stress, these stresses depend upon quantities propor-
tional to the square of the thickness, and whenever this is the case they may be treated
as zero in calculating the expression for the potential energy due to strain, because
they give rise to terms proportional to the fifth power of the thickness, which may be
neglected, since it is usually unnecessary to retain powers of the thickness higher
than the cube. It will also, in the present paper, be shown by an indirect method
that a similar proposition is true in the case of cylindrical and spherical shells, and,
therefore, the fundamental hypothesis upon which Mr. Love has based his theory,
altheugh unsatisfactory as an assumption, leads to correct results. A general expression
for the potential energy due to strain in curvilinear coordinates has also been obtained
by Mr. LovE, and the equations of motion and the boundary conditions have been
deduced therefrom by means of the Principle of Virtual Work, and if this expression
and the equations to which it leads were correct, it would be unnecessary to propose
a fresh theory of thin shells ; but although those portiens of Mr. LovE's results which
depend upon the thickness of the shell are undoubtedly correct, yet, for reasons which
will be more fully stated hereafter, I am of opinion that the terms which depend upon
the cube of thickness are not strictly accurate, inasmuch as he has omitted to take
into account several terms of this order, both in the expression for the potential
energy and elsewhere. His preliminary analysis is also of an exceedingly complicated
character.

2. Throughout the present paper the notation of THoMsoN and Tarr’s “ Natural
Philosophy ” will be employed for stresses and elastic constants, but, for the purpose

* ¢Phil. Trans.” A, 1888, p. 491.
+ ¢ London Math. Soe. Proe.,” vol. 21, p. 33,
MDCCCXC. —A. 3 K
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434 MR. A. B. BASSET ON THE EXTENSION AND FLEXURE OF

of facilitating comparison, Mr. LovE’s notation will be employed for strains and
directions, It will also be convenient to denote the values of the various quantities
involved, at a point P on the middle surface of the shell by unaccented letters; and
the values of the same quantities at a point P’ on the normal at P, whose distance
from P is &', by accented letters. The radius of the shell will also be denoted by a,
and its thickness by 2h.

The theory which it is proposed to develop for cylindrical and spherical shells
is identical, except in matters of detail, with the theory of plane plates which I
recently communicated to the London Mathematical Society,* but for the sake of
completeness a short outline will be given.

In the figure let OADB be a small curvilinear rectangle described on the middle
surface of the shell, of which the sides are lines of curvature; and let us consider
a small element of the shell bounded by the external surfaces, and the four planes
passing through the sides of this rectangle, which are perpendicular to the middle
surface. '

The resultant stresses per unit of length which act upon the element, and which are
due to the action of contiguous portions of the shell, are completely specified by the
following quantities ; viz., across the section AD,

T, = a tension across AD parallel to OA,

M, = a tangential shearing stress along AD,

N, = a normal shearing stress parallel to OC,

G, = a flexural couple from C to A, whose axis is parallel to AD,
H, = a torsional couple from B to C, whose axis is parallel to OA.

Similarly the resultant stresses per unit of length which act across the section BD are,

T, = a tension across BD parallel to OB,
M, = a tangential shearing stress along BD,
N, = a normal shearing stress parallel to OC,

G, = a flexural couple from B to C, whose axis is parallel to BD,
H, = a torsional couple from C to A, whose axis is parallel to OB.

* ¢ London Math. Soc. Proe.,” vol. 21, p. 33.
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If the edges AD, BD were of finite length, there would also be a couple whose axis
is parallel to the normal, but since this couple is proportional to the cube of the edge,
it vanishes in comparison with the other stresses when the rectangle OADB is
indefinitely diminished.

We shall denote the components of the bodily forces per unit of mass in the
directions OA, OB, OC by X, Y, Z; but for reasons which will be more fully explained
hereafter, we shall suppose that these forces arise solely from external causes, such as
gravity and the like. All forces arising from pressures or tangential stresses applied
to the surface of the shell will-be expressly excluded.

The first step is to write down the equations of motion of an element of the sheil
in terms of the sectional stresses,* which can be done by the usual methods; we shall
thus obtain six equations, three of which are formed by resolving the forces parallel
to OA, OB, OC, and three more by taking moments about these lines.

These equations will not, however, enable us to solve any statical or dynamical
problems ; in order to do this we require the equations of motion in terms of the dis-
placement of a point on the middle surface and their space variations with respect to
the coordinates of that point.

3. The values at P’ of all the quantities with which we are concerned are functions
of the position of P/, and are, therefore, functions of (7, 2, ¢) or (r, 0, ¢), according
as the shell is cylindrical or spherical. If, therefore, @’ be the value of any such
quantity at P’, and @ the value of the same quantity at the point P, which is the
projection of P’ on the middle surface, it follows that,

@ =F()=TF(a+ k)

=@+h’<‘%>+%h’2<%>+... oo oo (Y

by TAYLOR’'S theorem, where the brackets are employed, as will be done throughout
this paper, to denote the values of the differential coefficients at the middle surface
where r = q.

* Objections have heen raised by SAINT-VENANT and endorsed by Mr. LovE, to the
supposition that the first few terms of the expansion by TAvLOR’s theorem of the
quantities involved may be taken as a sufficient approximation, If, however, this
objection were valid, it would appear to me to upset the greater part of most physical
investigations ; inasmuch as it is always assumed as a general principle, that when a
quantity is known to be a function of the position of a point P, its value at a neigh-
bouring point P’ may be obtained by TavLorS theorem, unless some physical
discontinuity exists in passing from P to P. If, therefore, we put @ = R, we may
write

R=A4+ AN+ ... . . . . . . (2

\

where the A’s are functions of the position of P and also of the thickness of the shell.

¥ See BEsaNT “ On the Equilibrium of a Bent Lamina,” ¢ Quart. Journ. Math.,” vol. 4, p. 12.
3 K 2
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A question which is of fundamental importance in the theory now arises, as to the
way in which the A’s depend upon /. -

If R’ were of the order of the square of the thickness, it is evident that A and A,
could not contain any powers of % lower than the second and first respectively, whilst
A, could not contain any negative power of A The A’s are entirely unknown
quantities, and as there appears to be no possibility of determining them by an «
priort method, it seems hopeless to attempt to construct any theory of thin shells
without the aid of some assumption which will enable us to get rid of them. If, how-
ever, we assume, as has been practically done by previous writers, that, when the
surfaces of the shell are not subjected to any surfuce forces such as pressures or
tangential stresses, R’ and also S and T', so foar as they depcnd on h and W, are
capable of being expressed in the form

Ug+Ug+ . oL

where u, s a homogeneous n-tic functron of h and I, the problem can be completely
solved without attempting to determine by any a priori method the values of any
unknown quantities, and wpon this fundamental hypothesis the theory of the present
paper will be based.

There is some direct evidence of the truth of this hypothesis. In the case of a
plane plate of infinite extent, it can be proved to be true by means of the general
equations of motion of an elastic solid ;* and for the purpose of testing the hypothesis
in the case of a curved shell, I have recently investigated to a second approximation,
so as to obtain the term in A% the period of the radial vibrations of an indefinitely
long cylindrical shell, by means of the general equations, and also by means of the
theory of thin shells, and both results agree.t But far the most conclusive evidence
in favour of the truth of the hypothesis is furnished by the results to which it leads ;
and I have, therefore, conducted the following investigation in such a manner as to
furnish a test of the correctness of the final results, and consequently of the funda-
mental hypothesis by means of which they are deduced.

Having obtained the equations of motion of a cylindrical and a spherical shell in
terms of the sectional stresses, all these stresses are then calculated by a direct method,
with the exception of the tensions T,, T,, which cannot be calculated directly,
since they involve the unknown quantities A and A,. After that the potential energy
and the other constitutents of the variational equation are calculated, and the variation
worked out by the usual methods. The final result, as is always the case in such
investigations, consists of a line integral and a surface integral, the former of which
determines the values of the sectional stresses in terms of the displacements, and the
latter of which determines in the same form the three equations of motion. Now, if
the work and the fundamental hypothesis upon which the theory is based are correct,

# Lord RavLureH, ¢ London Math. Soc. Proc.,” vol. 20, p. 225 ; sce also vol. 21, p. 33.
4 ¢London Math. Soc. Proc.,’” vol. 21, p. 3.
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the variational equation will give the correct values of the tensions Ty, T,, which are
unknown, and will also reproduce the values of the other stresses which have been
obtained directly. This is the first test. The second test is furnished by the
consideration that, if we substitute the values of the sectional stresses which we have
obtained from the variational equation, in the first three of our original equations of
motion in terms of these stresses, we ought to reproduce the equations of motion in
terms of the displacements, which have been obtained from the variational equation.
This is found to be the case both when the shell is cylindrical and when it is spherical;
and I therefore think that the fundamental hypothesis is sufficiently established.
Having obtained the values of the sectional stresses, the boundary conditions can be
deduced by means of STokES' theorem, which enables us to prove that it is possible
to apply a certain distribution of stress to the edge of a thin shell, without producing
any alteration in the potential energy due to strain.

The fundamental hypothesis that R’, 8’, T" may be treated as zero is not true when
the surfaces of the shell are subjected to external pressures or tangential stresses ; for
if the convex and concave surfaces of the shell were subjected to pressures II;, II,, the
value of R’ as we pass through the substance of the shell from its exterior to its
interior surface, must vary from — II; to — II,, and consequently (excepting in very
special cases) R will contain a term independent of the thickness. Hence the theory
developed in the present paper is not applicable to problems relating to the collapse
of boiler flues, or to the communication of the vibrations of a vibrating body to the
atmosphere. In order to obtain a theory which would enable such questions to be
mathematically investigated, it would be necessary to find the values of the additional
terms in the variational equation of motion, which depend upon the external
pressures ; and this is a problem which awaits solution.

It will be convenient briefly to state the notation employed.

In the case of a cylindrical shell, OA is measured along a generating line, and OB
along a circular section. In the case of a spherical shell, OA is measured along a
meridian, and OB along a parallel of latitude.

The three extensional strains along OA, OB, OC are denoted by oy, oy, o5 ; and the
three shearing strains about those lines by =, =,, w;, We shall also use the letters
N, ps N, p, p’ to denote the first and second differential coeflicients of oy, oy, =y
with respect to 7, when » = a. We shall also write

E=(m—un)/(m+n), K=o + o,

A =0+ E (o + 0y), B=o,+ E(o, + o),
E=A+E(\+p), F=p+EX+p),
E=N+EN+x), F=p+EN+u).
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Cylindrical Shells.

4. Before we can obtain the equations of motion or the potential energy, it will be
necessary to ascertain the values of the first and second differential coeflicients of the
displacements with respect to » when » = a. 'We shall, therefore, proceed to calculate
these quantities.

Putting N\, w; N, u’ for the values of (da/dr), (doy/dr); (dPo/di?), (dPoy/dr?)
when r = a, we have

R'=(m+n)ds+ (m—n) (o + o)
= (m 4+ n) og + (m —n) (o + o)

t {m+0) () + (=) 0+ ) 0

tr{mn (G2t m—mo e+ @

But from (2),
R=A+AMNFFAL ... . . . . . . . (4)

A = (m +n) o3 + (m — n) (o + o) WI
A1=(m+7l)<%>+(m—~n)()\+p) L

whence

(5),
20- l
A, = (m +n) C%z) + (m —n) (N + w)J

where A, A; do not contain any lower powers of A, than 2* and % respectively, and
A, does not contain any negative powers of A.

If v/, w’ be the component displacements of any point of the substance of the
shell in the direction z, ¢, r, the equations connecting the displacements and strains
are

-

, '
, 1 /dv ,
“o=; (5 + )
P
T= g

N ()8

whence if



http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CYLINDRICAL AND SPHERICAL THIN ELASTIC SHELLS. 439
we obtain
da dw dv v 1 dw dw A
()==—% (G)==ti-m (&)=it-" ©
and
P\ _ (dm) _ (o) (dm) 1 dA | pdKY
) T \dr) dz dr) dr|  m-+n dz dz
d% _ dos, @ 1 dA \ E dK
<El7'§>—<dr>+a-fa(77z+n) d¢+ad¢ r coe (9)
d?w A,
<Zi;-5>—m+n_E()\+M) ' 3

5. We can now obtain the equations of motion in terms of the sectional stresses.
Let dS be an element of the middle surface whose coordinates ave (@, 2, ¢), and
dS’ an element of a layer of the shell whose coordinates are (0 + Wy 2, ¢); then
= (1 4 #'/a) dS. If we consider a small element of volume bounded by the two
external surfaces of the shell, and the four planes passing through the sides of dS,
which are perpendicular to the middle surface, we obtain by resolving parallel

to OA,

4 (Tya89) 8 + 5 O, 82) 8 = pdsf (= X) (L+ Kfa)dl (10).

o =u+h’(du>+lh,2<du>.

accordingly if we substitute the values of (du/dr) and (d*u/dr®) from (8) and (9) and
recollect that all terms which vanish with & may be omitted when multiplied by A3,
the right hand side of (10) becomes

But

pdS{2h(u-—-X)+ 1h3E~——ili@}-

da dz

Resolving parallel to OB, OC, and then taking momerts about OA, OB, OC, we
shall obtain in a similar way five other equations, which, together with (10), may be
written . »

a LD g gt 2
e d¢—p{&h(u X)+mES — 2 dz}
14T, ) S dw
ad¢+ D, {zk(v—-—Y){- ok < ~—>}

¢ = 3a? de
dN, | 1dN; T, ‘ s 28 s
et =D oG-z — e+ - ER] L (),

1dG, djﬁ ‘)pk du
a d¢ 17 3a \dg
1 dH,

gfdw w X
- Nz=—%Pk3<'cjz‘—&+a>

j

_ o +Y>

-
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These equations will not enable us to solve the problem in hand; in order to do
this we require the equations of motion in terms of the displacements, and also the
values of the sectional stresses in terms of the same quantities.

6. The values of the couples, and also the values of M,, M,, can be obtained by
direct calculation ; but the values of T, T, cannot be so obtained, since they involve
‘the quantities A% and Ay%®, which are unknown, and which cannot be neglected. We
shall, therefore, be compelled to find the expression for the potential energy, and
employ the Calculus of Variations.

The following results will, however, be necessary hereafter. If P, Q, R, S, T,
U’, be the stresses at the point a + £/, z, ¢, we have

Ty 8 = jﬁ P (o + 1) S A
.-_-j” {P-{-h’( >+1m("" >}<1+ >a8q§dh’,

T, = 2)P 4+ 1 78 <@3§) +3 20 <d1>

dr

whence

T, = 2AQ + 1h3<dQ>

M, = 2nha, + § nh® <” f’*) 42 <flw>

3a \ dr

M, = 2nh=; 4 § nh? <£ng>

G, = — hg(@) P (12)
(@)

=)+

H
i

-/

From the third, fourth, and last of these we see that (M, — M,) @ = H,, as ought
to be the case.
Let
A =0, +E (e + o), B=0, +E(e+ 0,) (13)
E=A+EMN+p), F=p+EN+p ‘
Then, in the terms multiplied by %3, we may put

= 2%%, Q = 2%%,

) ()=
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whence, if p = (dw,/dr), the last four of (12) become
G, = — $nh’FF, G, = % nhd <E + %‘)

(14).
H =- %nh3<p + %’) » Hy=%nh%

Since the couples are proportional to the cube of the thickness, it follows from the
fourth and fifth of (11), that the normal shearing stresses N, N, are also proportional
to the cube of the thickness, and therefore the terms of lowest order in the expres-
sions for the shearing strains =, w, are quadratic functions of % and 7/, since such
functions when integrated through a section of the shell, give rise to quantities
proportional to the cube of the thickness. This is consistent with the fundamental
hypothesis.

The next thing is to calculate the values of the quantities A, u, p.

From the first and fifth of (6) we obtain

\ = doy =§32_d9w’
— \dr dz dz®

and, since the terms in \ are all multiplied by A3, we may put

A=—= . . . . . . . . .. (15).

- d?

Similarly from the second and fourth of (6) we obtain

1 /d? E
M) Fkw o
Lastly,
| Y L A A T G G
p_<dr>—a<d¢d¢>+(drdz)—a2 o’
or '

2 d*w 1 dv 1 du

W e have, therefore, completely determined the values of the couples in terms of
known quantities.

We shall also require the values of (d?c/dr?), (dPoy/dr), (dP*ms/dr’), the first two of
which we have denoted by X, u’; and the last of which we shall denote by p’. The
values of these quantities can, by a similar process, be shown to be

, @K 3

A -E-;lz—g

, % B &K E

K==t e 0tm (18).
e P T 2E &K

e dzdg J

MDCCOXC.—A. 3 L
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Equation (17) and the last of (18), combined with the third and fourth of (12),
determine the values of M;, M,.

It will be desirable to point out at this stage of the investigation, that we have
obtained materials for the complete solution of any problem in which T, and u are
zero, and none of the quantities are functions of z. The boundary conditions at a
free edge will be discussed in § 11, and the reader who does not wish to be troubled
with the long analytical process of finding the potential energy and working out the
variational equation of motion, may pass at once to § 10, and the following sections
where certain problems of a fairly simple kind are discussed.

7. We must now find the potential energy due to strain.

By the ordinary formula, the potential energy of a portion of the shell is

%
A4 =%-‘.“_ﬁ[(m—|— n) A"
+ ni{w* + », + =% — 4 (00 + oy'05 + o))} (1 + AJa)dh'dS (19),

‘where the integration with respect to z and ¢ extends over the middle surface of
the portion considered. In evaluating this expression we may at once omit =, =y,
for since they are quadratic functions of A and A/, they will give rise to terms which
are proportional to 4% which are to be neglected.

Since

r_ ’ Cgé 9 d?A
o st ()4 () 4
it follows that

b ar(145)aw
e [ (8 1 () (2

from which it is seen that W is expressible in a series of odd powers of A.
From (5) we obtain

A=(1-—-E)(O‘1+0'2)+

m-}-n

(%) (1 —E) (A +p) +
<‘fh—§> — (1 —E)(\

and, therefore, the portion of W per unit of area of the middle surface, which depends
upon A, is

m+n
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o+ 0 {]"(0'1+0'2+A/2”)2 177'3<)\‘|"l“«"|‘A1/2n)2

4080, + 03 AJ20) (N A20) + o+ ok Af2m) Ok o Ayf2m) | (20)
in which in the last three terms we may omit the A’s since they are multiplied by A°.
Again
o/oy (1 + Vo) = o0y + Meh® + L (Noy + /o) W2 4+ (Ao + poy) B2 a + .
whence

an , ooy (1 + W/a) di = dnhooy + §nh®\u + 20k’ (Noy + p'oy)

4 h3
. n ()\0"2 + poy)  (21).
Also

(ot o QKo = (ot et B0+ (52) + 40 O + w)
-+ 1h,2(°'1+°’2) <do-3> M {()\+IL)°'3+(°"1+0'2) (CE)},

dr
whence

2] (o) +09) 0 (1 +1Ja) Al = dah o, + o) {2 — B (1 + o)}

m + n
— 4B+ g — $1E 01+ o) (V4 ) — LB p) oy o) (22).

Lastly

A
Yol ) (14 W) A = nhad + by + Jaltog + eamp  (23).

Substituting from (20), (21), (22), (23) in (19), it will be found that the term Ah,
which is (or at any rate may be) proportional to A3, disappears; and thus the value
of the potential energy per unit of the area of the middle surface is

W = 20k {0 + o + E (0, + o) + L %}
43l 2+ B w457
+ i (@Y + By + §=p)

471]& (g)\'l’%/“""*' wp) Ce e e e e e (24)7

in which = is written for =j, the suffix being no longer required.

This is the expression for the potential energy as far as the term involving 4% The
first term depends solely upon the extension of the middle surface; the second term
depends principally upon the quantities by which the bending is specified, and the

3L2
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third and fourth consist of the products of the extensions and the quantities which
principally depend upon the bending.

8. Having obtained the value of the potential energy, we must in the next place
form the variational equation of motion. This equation may symbolically be written

SW+ST=8U+SL . . . . . . . . (25),

where 8T is the term which depends upon the time variations of the displacements,
38U is the work done by the bodily forces, and 83 represents the work done upon the
edges of the portion of the shell considered, in producing the displacements, du, dv, dw,
by the forces arising from the action of contiguous portions of the shell. It, therefore,
follows that 3L is a line integral taken round the edge of the portion of the shell
which is being considered ; and as one of our objects is to calculate the values of the
sectional stresses in terms of the displacements by means of (25), it will be convenient
to apply the variational equation to a curvilinear rectangle bounded by four lines of
curvature.
We must now calculate 3T. We have

sT=p|[[ (0 - 80’ Sw') (1 + Ifa) I d.

Now
ﬁ W Su! (14 W Ja) A = 2k Su + 3 hf’»‘—z% LY <u o 8u>
(R g
—zhuau+9h3@d§?+lh3E( da—K+78>

5 (e dbo i g
~ 34 <“ d T ”)
by (8) and (9). Treating the other terms in a similar way, we shall find that the
value of 8T is

ST = 2ph [ (a8 + 5 80 + i1 w) dS

dwddw | 1 (dw -\ [ddw
28 ”{dz . +ﬁ<@—v><ﬁ—8v>+E2KSK} ds

41 meﬂ{ d3K+1’d3K w(8h+5ﬂ)+—8 1—1dK8v—-(?\+u)8w}dS

_..g?ilz_g.”{u% %Su—{— <C§; 8@)—}-1@; >8v

,+E(w8K+sz)}ds .. (26).
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We must, in the next place, calculate 83k. We have
b 2
o = (| (P8 UYSY) (d+ ) dW dp+ [ j QS+ U ) i dz
+(Ndwjadp+ [Nidwds . . . . L (o)

From the way in which 8@ has been calculated, we see from (8), (9), and (12), that

Y S (1 ) I = Bu | 3 pop PO
LhP S/ (14 W ja) db = T, 8u + Gy 3 + 3 1P 2

= T187/,—G2%U+%nh3Eﬁd—§i—{o

Treating the other terms in a similar way, we find

5% =HT18u+M28@+ N, Sw — G, ¥ 4 %l(‘i@‘i’ - 8v>

dz
s sra @K | n¥Es dSK
+ 3 WER 5=+ = d¢}“d¢

@, /dd o
+ HM18u+T28v+N18w+j<ﬁ—— 82}) i A
2nh? déK ddK
+ 5, BB + S —}dz .

= (28).

Lastly, since the shell is supposed to be so thin that X, Y, Z, may be treated as
constants during the integration with respect to 4/,

SU = pmf_h(xsu' + Y80+ Zw) (L + Wja) dl dS.

=2ph [[(X8u+ Y 80 + Z 5u) dS

+%ph3E”{X”§—f+§—‘—l§f—z(3h+8ﬂ)}ds

_.“Zg—fﬁ{x%l—”+§<%—8v>+ZE8K}dS .. (29).

9. We have now obtained all the materials for the complete solution of the problem,
and we shall proceed to work out the variation in the ordmary way.

Let us denote the four terms of the expression for W given in (24), when
integrated over a curvilinear rectangle bounded by four lines of curvature, by W,, W,,

W, W, Then
| W, = dauh [[(@Bor, + B0, + § wdem) 0z dip
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Substituting the values of oy, oy, = from the first, second, and sixth of (6), and
integrating by parts we shall obtain

SW, = 4nh j(sasu + 1 =) a d + dnk j(-;g wdu -+ 2BSv) dz
—471h”{<d§ %Z;L‘;)su-F(i‘;med)s ———Sw}adqub . (30).

Now 6W,, 6W, W, depend upon %3 ; if therefore we substitute in (25) the value
of SW, from (30), and the portions of 8T, SU, and 83, which depend upon A, we shall
obtain the approximate equations

T, = 4nh A, T, = 4nh 93} (1),

M, =M, = 2nh=
and

pimin(B 4 L2}

’ 1d
P”‘2”<ﬁ%+zdz>+ Yj C L (32).

ow = — 2nWBJa + pZ

These equations are the same as those obtained by Mr. LovEe,* and which are
employed by him m dlscussmg the vibrations of a cylindrical shell. The complete

equations giving p, pv, pw in terms of the displacements and their space variations
contain certain additional terms involving A® (since the common factor A disappears)
which it is our object to determine ; but, since we do not retain terms higher than A3,
we may, if convenient, substitute the above approximate values in all terms of (25)
which are multiplied by A3,
Again
SW, = 4l [[(3E 8\ + & 8 + 4 p &p) a de d.

Substituting the values of \, n, p from (15), (16), and (17), we obtain

([Eondzap=—[[£% P8 1 dp
=[<0;—3E3w d8w>d¢ ”d;—-g—ﬁ‘éwdzdf/) L (39),

also

* ¢ Phil. Trans.,” A., 1888, pp. 538 and 540. HEquations (32) correspond to Love’s equations (86),
(87), and (88); and (31) to (101).
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[[#8pdzap= L[5 {d;§§’+ Sw + E< douw | 9’%: + sw>} dz dp
= —Z[Foudp—! KE;ES@ — Efs + ;ﬁd&U)
+ 5 [[{EaF o0+ & df Sv — (f;gg’ L F+ E;ﬁ>8w}dz dp  (34),

and
%—”pSpolquS =2iﬂ“‘p<a€l;—:— % — Za%)dzdcﬁ
= o [povdp — o [poude + ”((‘ZS aff 80)dzdg

— 2 [lp g d=d

The last integral can be evaluated in two different ways, according as we integrate,
first, with respect to ¢, and secondly, with respect to z; or first with respect to z,
and secondly with respect to ¢. The proper way to deal with such a term is, to
evaluate the integral in both ways, and then multiply the two values by 8 and 1 — B,
and add, where 8 is a quantity which must be determined from the conditions of the
problem in hand. We shall thus find that the value of B1is L ; we therefore obtain

Jg—ﬂpSpolquS = _2'1'&"(10 v + d;: dw — d;;”>d¢

1 d
—ﬁf<2°3“-“£8w'+“107;)d2
1 o A

Collecting all the terms together from (33), (34), and (35), we finally obtain

8W2=%nh3H “F su +<d§5+§1—;li>8w——¥ﬁ%—”‘ (‘?;" 8v>}ad¢>
+ ot [{= 2o — o LERE s, v (3 )b

dd s '
_i}_(w 8'v> -pTw}dz

_ dé
+%5 ([ + 223{;)8u+ a1
— { 5t (dgf + &+ E;Q?) + M}Sw]a dz de (36).
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Let :
) T=N+EN+p), FH=W+EN+x). . . . (37,
then

SW, = 2 nhsf [ (T80, + 805 -+ 1 98w + AN + B + L wdp') dS;

from this result, together with (24), it is seen that dW; and W, each consist
of two parts, which may be denoted by §W;', W,” and 6W,/, SW,” respectively. The
values of 8W," and §W,' may at once be written down from (30), by changing &, 33,
= into ', ', p’ and I, F, p respectively, and by altering the coefficients from 4nh
into 2nh% and 4nh3/3a respectively. With regard to SW;” we have

W, = k| [ (RSN + 2B S + } wdp') dS.

Substituting the value of X from (18) and integrating once by parts, we obtain

d?6K

dz? ds

[[aovas=[[Ea

doK dA déK
=E{@a® adg — B[ T as.
Treating the other terms in a similar way, we shall finally obtain

3 |
5w, = ((3unBA TS + 7, Ew o) ads + (%5, s 3B )ds

d& 1 da\doK = E /143 dw\ ddK  EI8 g
=t [{B (4 5 g) L HT) g - O]
nh?

+—§—7”{—2338p,+%(8w——0&8p)}d8. N 1))

If in the first surface integral in this equation, we substitute the approximate values
of the coefficients of d8K/dz, &c., from (32), which we may do, since this integral is
multiplied by %%, and then substitute the values of §W,”, 8T, 8U, and 8% in (25), it
will be found that all the terms involving déK/dz, d8K/d¢, and S\ 4 8u cut out ; we
are, therefore, no longer concerned with them, and the value of 8W;” reduces to the
last line. On this understanding we may, therefore, write

Wy o oW = (@ + o o dmtp) a8

= —Se[{at + 5, (55 — ) }ads

dnhP( [ [dRdSw | 1 dw (ddw
+ 3, “{Ezjjz‘-l- oy 072<%; - 8’0>}dS ... (39)
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We are now in a position to test the correctness of some of our work, for picking
out the terms involving ddw/d¢ — Sv, ddw/dz in the line integrals in (36) and (39),
and equating them to the corresponding terms in the value of 834 which is given by
(28), we see that we have reproduced the values of the couples, which we have
already obtained in equation (14). We may therefore leave the couple terms out
henceforth. |

Collecting all our results from (26), (28), (29), and (39) the variational equation
becomes

nh? d& dow 1 dw [déw 1
SW, +3W + Wy +8W./ + 5, ”{37 % dz<d¢ —3”>de

+ 2ph ” (uu + vy + @8@0) dsS

+ 2 pht ”{(‘;w )%”Jriz(%’_ m;)(‘%’ -—.Sv> —I—E(EK—ch}/a)SK}dS

+%phsEjf{dK +i%8v (X+,‘L)3w}ds
_%’g”{‘gg 41 <&$-—v>8v—|—EK8w}dS

= 2ph“(X8u+Y8@'+ZSw)dS——g‘o—h—”{X%?+~<%u—8 >+ZE8K}ds

+§(T13u+M231;+N28w)adqs+[(M18u+T28v+N15w)dz .. (40)

where the values of §W,, W, are given by (30) and (36), and the values of W/,
SW, are obtained from (30) by changing certain letters as we have explained above.

We have now got rid of all the terms involving the second differential coefficients
of 8u, 8v, 8w, and all that now remains to be done is to integrate by parts the terms
which involve the first differential coeflicients. Putting

20 d& | dw w , X
Sl S A
nds | 1/dw -\ Y
B“pa olz+ <@—2v>+5,
y=EEK —wla+ Z/a) . . . . . . . . (41),

we ‘have
" MDCCCCX, —A. 3 M
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({/ w Bw B d dw ™

= % ph? [(y Su + adw) a dp + % ph? J(y Sv + Bdw) dz

—2p 1 dy LdB v\ ¢
3o H{ B+, G0 +< to a>8w}dS L (42).
Substituting the values of 8W,;, §W,, §W,/, W, and the right hand side of (42)

in (40), and picking out the line integral terms, we obtain the following equations
for the sectional stresses, viz.,

Ty = b — SR 4 3B 4+ U 4 PR B — b+ 7) |
My = 2nhw 4 % nkPp” + 5 zi@
d¥E 1 dp\ , 4nk? AR w X
3 I S {27 o -
Ny =g nh <d 2 qu) F g a Taeh <d7 a n,> g (43)

G2=%”h3<qﬁ+g>

H, = — 3l (p +2)

-/

which give the values of the sectional stresses across a circular section ; and

M, = 2nhw + § nh?p’ 7
T, = 438 — "o Bff 4 3 ubs + 0B (sBK — 4+ 7)
4 7s ﬂ- dp\ | 20k} dw z_ph- dw . (44)
Ny = g (; d¢+2dz>+ 30 dz T 34 <d¢“‘2 vt Y
G, = — & nbigf
H, = §nh’p J

which give the values of the sectional stresses across a meridian.

If we compare these equations with the third and fourth of (12), with (14), and with
the fourth and fifth of (11), we see that we have reproduced (i.) the values of M;, M,
given by (12); (ii.) the values of the couples given by (14); (iil.) the values of the normal
shearing stresses which are obtained from the fourth and fifth of (11), by substituting
the values of the couples from (14). We have thus subjected our fundamental
hypothesis to a fairly searching test. It is, however, in our power to subject it to a
still further test ; for if we equate the coefficients of du, 8v, 8w in the surface integrals
in (40) and (42), we shall obtain the equations of motion in terms of the displacements,
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and on substituting the values of the sectional stresses from (43) and (44), in the first
three of (11), we ought to reproduce the equations of motion in terms of the displace-
ments which we have obtained from the variational equation.

From (30), (36), (40), and (42) it follows that these equations are

[ dK 212 dw d@& | 1ds\  4ak? j
- 179 el — =
p{Z(u X)+3hE dz Sa } —4n<dz 2ad¢> 30 olg

a3z’ 1 dp dnh? 435 d'y
2kt (T4 =) 4 |2 il
g nh ( dz 7 2 qu) 30 dz TPV G (45).

p{2('1;-Y)+k EdK+2k2<@_@)}

de d¢
(B S eem e
+ 2 @kz <_ ﬁ»ﬁ > + 259{% + 2522 <ZZ 20 4 Y> .. (46).

P12 —2) = 4R ER+ ) — K]

_ And3 | 4nl? L] 4
==, Tae {azdz9+d¢2+ EF +a 570 d¢}
2nh® o, . 4Ank? d (AR | 1 dw d (dw u X
—§E§+ 3a dz< 2ad¢>+§pl dz(clz—g+;>
20h2 d [dus 20h?
+ 2 d¢<d:; % +Y> PLR@ER —%4+2) . . . . @47)

If we compare these equations with the equations obtained by substituting
the values of the sectional stresses in the first line of (11), it will be found that
they agree in every respect.

10. It will hereafter be necessary to consider certain problems in which the middle
surface is supposed to experience no extension or contraction throughout the motion ;
and it will, therefore, be necessary to obtain the requisite equations when this is
supposed to be the case.

The conditions of inextensibility are

or

dv
e Y )
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which require that -
au d*U av ) .
i +V, =N e — % SRR (49)3

u = Ua, V== -2

where U and V are functions of ¢ alone.

In this case the potential energy reduces to the second line alone, and from (15),
(16), and (17) we obtain

Lo )|
H a? <d¢>2 s (50)
_ 2w W\
p a <dzcl([> :> J
and from (24)
4nh? m dPw 2 dPaw dv\?
W= 342 {ag(m+n) <W+w> +<dzd¢_ clz> } .. .. (1),

which agrees with the expression obtained by Lord Ravrerem.*
Also from (14)

. 4: ]LS (ZQ
¢, =" (14 E) (#;erﬂ
G, = — L’—i%;E <j~2£ + w> (52)

.
|
H=—Hy=—3nh% J

The values of the stresses M;, M, may be obtained either from (43) and (44), or
from (12) combined with (15), (16), (17), and (18) by introducing the conditions of
inextensibility ; and the values of T;, T, might be calculated by taking the variation
subject to the conditions of inextensibility, and using indeterminate multipliers.
This process would not, however, be of much assistance, inasmuch as it would intro-
duce two undetermined quantities into the values of T,, T,, which depend upon the
boundary conditions; whereas in this case the values of T, Ty can be obtained directly
from the first and third of (11) combined with (49). The values of N;, N, are given
by the fourth and fifth of (11) combined with (50) and (52).

11. We must lastly consider the boundary conditions.

Equations (43) and (44) determine the stresses on the line elements adg and ‘dz
respectively, which are produced by the action of contiguous portions of the shell ;
and it might at first sight appear, as was supposed by Porsson, that when a shell

“* ¢Roy. Soe. Proc.,” vol. 45, p. 116.
t ¢ Paris, Acad. des Sciences, Mémoires,” 1829, vol. 8, p. 357.
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of finite dimensions is under the influence of forces and couples applied to its edges;,
these equations would give the values of such forces or couples, and that the
conditions to be satisfied at a free edge would require that each of the above five
stresses should vanish at a free edge. KircHHOFF* has, however, shown that this is
not the case, but that the boundary conditions are only four in number; and the
reason of this is, that it is possible to apply a certain distribution of stress to the edge
of a shell, without producing any alteration in the potential energy.
By St1okES’ theorem,

ddw\
;l—;) dz =0 5

[ P 2

the integration extending round any curvilinear rectangle bounded by four lines of

curvature OA, AD, DB, BA. If, therefore, we apply to the side AD the stresses

, _law

. ’ ’__ ’
M, = H'/a, Nz_—ad(ﬁ’ H/'=H’;
to the side DB the stresses
’ dH’ T 7 ’
Nl = “C’lz—, H2 = —H N

and to the sides BO, OA, corresponding and opposite stresses respectively, the
preceding integral becomes

[ {M2 S0+ Ny Sw 4 <%i’ _

8@)} add + KN{ dw — H,/’ Of—zw\) dz = 0,

which shows that the work done by these stresses is zero. Such a system of stresses
may, therefore, be applied or removed without interfering with the equilibrium or
motion of the shell.

Let us now suppose that the rectangle OADB, instead of being under the action of
the remainder of the shell, is isolated, and that its state of strain is maintained by
means of constraining stresses applied to its edges ; then it follows that if, instead of
the torsional couples H,, Hj, due to the action of contiguous portions of the shell; we
apply torsional couples #),, #),, where '

Hy=H+H . . . . . . . . . (53),

B=H,—HW . . ... (54

* ¢CRELLE,’ vol. 40, p- 51, 1850, and Collected Works, p. 237.
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the state of strain will remain unchanged, provided we apply in addition the stresses

W, =M, + H/o

141 N € 1
P, =N+ do (%5)

and .
Pi=N+—— L (506),

whence, eliminating H’ between (53), (55), and (54), (56) respectively, we obtain

Mo — By = My — H,

14, 1 dH, Co e (B,
ﬁg « d N2 a dg
and
dH
P+ dz""N1+7lz—2 Coe oo (58

In these equations the Roman letters denote the stresses due to the action of
contiguous portions of the shell, whose values are given by (43) and (44), whilst
the Old English letters denote the values of the actual stresses applied to the
boundary. If, therefore, the shell consists of a portion of a cylinder which is bounded
by four lines of curvature and whose edges are free, the boundary conditions along
the circular edges are obtained by equating the right hand sides of the first and
fourth of (43), and the right hand sides of (57) to zero, the first two of which express
the condition that the tension perpendicular to, and the flexural couple about, a line
element of the circular edge must vanish when the edge is free ; and the boundary
conditions along the straight edge are similarly obtained by equating the right hand
sides of the first, second, and fourth of (44), and the right hand side of (58) to zero,
the first three of which express the conditions that the tangential shearing stress, the
tension and the flexural couple must vanish when the free edge is a generating line.
We may also, if we do not wish to introduce the time and the bodily forces into these
equations, substitute for v — X, v — Y, w — Z their approximate values from (32).

12. We have now obtained all the materials we require, for a perfectly accurate
approximate solution of any problem relating to the vibrations of a thin cylindrical
shell as far as the terms involving the cube of the thickness, but before proceeding
to discuss any problems, it will be necessary to make some remarks respecting
Mr. Love’s paper. The first line of my expression for the potential energy which is
given in (24), and which involves A and not /% agrees with the expression obtained by
Mr. Love and other writers ; also the approximate equations of motion (32) agree, as
has been already pointed out, with the corresponding equations obtained by him, and
by means of which he has discussed the extensional vibrations of a cylinder. It will
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also hereafter appear, that observations of a precisely similar character apply to the
corresponding equations which determine to a first approximation the extensional
vibrations of a spherical shell. This portion of his paper therefore appears to be per-
fectly satisfactory ; but that portion which involves the terms depending upon the
cube of the thickness is open to criticism.

In the first place, he appears to have employed a system of rectangulor axes, con-
sisting of the normal at a point on the middle surface, and the tangents to the two
lines of curvature through that point. Now, although it is immaterial, so long as
we confine our attention to infinitesimals of the first order, whether a quantity is
measured along the tangents to three orthogonal curves or along the curves them-
selves, yet when it is necessary to take into consideration infinitesimals of higher
orders, which is always the case whenever an investigation involves changes of
curvature, a method in which everything is referred to rectangular axes requires care ;
and on comparing the terms in A% in (24) with the corresponding terms in Mr. Love’s
expression for the potential energy, it will be seen that he has omitted several terms
which involve the extensions of the middle surface, which partly, although not
entirely, arises from his having omitted the factor 1 4 A'/a. It is not improbable
that these terms may be small, but at the same time we are not at liberty to neglect
them altogether ; for it is quite evident that a term such as 8 (u) in the variational
equation, will give rise to terms in the equations of motion and the equations giving
the values of the sectional stresses, which do not involve the extension of the middle
surface.

In the second place, on comparing Mr. LovE’s variational equation of motion® with
my equations (25), (26), (28), and (29), it will be seen that he has omitted several
terms in the expressions for 3T, 8U, and 3.

In the third place he states (p. 521) that the extensional quantities “ o}, oy, = may
not, in general, be regarded as of a higher order of small quantities than «,, A, «;,”
which are the quantities upon which the bending depends. The argument of Lord
Ravrereat appears to me to show, that at points whose distance from the edge is large
in comparison with the thickness, the extensional terms are usually small in comparison
with the terms upon which the bending depends. It must be obvious to every one,
that a thin plate of metal or a steel spring can be bent with the greatest ease by means
of the fingers, whereas the production of any extension of the middle surface which
would be capable of measurement, would involve considerable muscular effort. These
considerations indicate that when a thin shell is vibrating, the change of curvature is
so greatly in excess of the extension of the middle surface, that notwithstanding the
smallness of h* compared with %, the product A% (8p~')® is large} compared with

% ¢Phil. Trans.,” A., 18€8, p. 514, equation (19).

+ ¢ Roy. Soc. Proc.,” vol. 45, p. 105.

1 The problem discussed in § 14 shows that the product ke? may be of the order k5 (6p~1)?, except in the
neighbourhood of a free edge; but in the equations of motion we have to deal with the quantities ko and
18 &pL.
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the product ho® At the same time, inasmuch as the production of change of
curvature involves some extension or contraction of all but the central layers, and
consequently of those portions of the shell which are near its external surface, it does
not seem unreasonable to suppose that in the neighbourhood of a free edge, an exten-
sion or contraction of the middle surface may take place, which is comparable with the
change of curvature.

 In the fourth place, Mr. Love appears to have argued as if the equations of
motion of a shell, whose middle surface undergoes no extension or contraction
throughout the motion, might be obtained from his general equations (30), (31), (32),
by putting ¢, = o, == = 0 ; but it has already been pointed out, that the correct
equations for this kind of motion must be obtained by taking the variation subject
to the conditions of inextensibility, and introducing indeterminate multipliers. It
will be shown in the next section, that in the case of the flexural vibrations of an
indefinitely long complete cylindrical shell considered by Horre and Lord Ray-
LereH,* the differential equation for the tangential displacement v is of the sixth
degree, and that when the cross section of the shell consists of a circular are, this
equation contains suflicient constants to enable all the conditions of the problem to be
satisfied.

18. The first problem which we shall consider will be that of the flexural vibrations

of an indefinitely long cylinder, in which the displacement of every element lies in a
plane perpendicular to the axis of the cylinder, and which has been discussed by
Horpe and Lord RAYLEIGH.
. In this problem the middle surface is supposed to undergo no extension or contrac-
tion throughout the motion, and the solution is most easily obtained by means of the
general equations (11). In these equations we must omit all the terms on the right
hand sides which involve A3, for they would, if retained, give rise to a term involving
I* in the period equation, which must be rejected, since we do not carry ’rhe approxi-
mation further than A® in determining the period.

We evidently havet M, = N, = H, = 0; also none of the quantities are functions
of 2. The equations of motion are thus

ar,

b + N, = 2phaw,
dN,

) - T, = thaw
d¢> L4+ N,a =0,

# ¢ Theory of Sound,” vol. 1, p. 324 ; ¢ Roy. Soc. Proe.,” vol. 45, p. 129, Equation (51).
+ We shall presently see that these conditions imply a constraint at infinity.
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also the condition of ineﬁitensibility gives

dv
ﬁqg + w = 0.

Eliminating N, T,, and w, and substituting the value of G from the first of (52),
we obtain

4mnh? a3 d\2 By ..
§m<@+dﬁ¢>v+@;—v—0 N 1) 8

whence, putting

— £+
v = APt

we obtain
0 dmnh?s? (s* — 1)?
PP =
3pat (m + n) (s* + 1)

(60),

which is the required result.

If the cylinder is complete, s is any integer, unity excluded, but if the cross-section
of the cylinder consists of a circular arc of length 2aa, s will not be an integer. Its
values in terms of p are the six roots of (60), but in order to obtain the frequency
equation, the value of s in terms of the dimensions and elastic constants is required.
The additional equations are obtained from the boundary conditions, which have to be
satisfied along the straight edges of the shell, and these require that the tension T,,
the normal shearing stress Ny, and the flexural couple G, should vanish at the edges

where ¢ = 4 a.
Since
8mnh?
G, =— 3(m +n)
where _
1 /dP dv
b= (ot )
the boundary conditions are obviously
n=0,
u
dp — 0,

dmnh? @ o =0
3pa® (m + n) de? + dede —
These conditions have to be satisfied at each of the edges of the shell where
¢ = & a, and there are, therefore, six equations of condition ; hence the six constants
MDCCCXC,—A, 3N
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which appear in the solution of (59) can be eliminated, and the resulting determinantal
equation, combined with (60), will give the frequency.”

If a complete cylinder of finite length were vibrating in this manner, it would be
necessary to satisfy the conditions at the circular ends, and this would require that
T, =0, G, = 0 at the ends for all values of ¢; and from the first and fourth of (43)
we see that this requires that w =0, or

whence

w=Acos¢ 4 Bsin¢

for all values of ¢. Since it is impossible to satisfy this condition for the kind of motion
considered, it follows that when the cylinder is of finite length it would be necessary
to apply at every point of the circular boundary a tension T, and a couple G, of the
requisite amount.

This is the question upon which Lord Raviricr and Mr. LovE are at issue ; and
the preceding investigation shows that Mr. Love is right in supposing that it is
impossible to satisfy the boundary conditions along the curved edges of a cylindrical
shell when these edges are free, although he does not appear to have noticed that it
is possible to satisfy these conditions when the free edges are generating lines. In
order to obtain a complete mathematical solution of this question, it would be
necessary to work out the problem of the free vibrations of a complete cylindrical
shell of given length 27, which is deformed in such a manner that dv/d¢ 4 w = 0,
where v and w are functions of ¢ alone, and is then let go, without assuming that
the middle surface remains unextended during the subsequent motion.

Owing unfortunately to the extremely complicated nature of the general
equations, a rigorous solution of this problem would be exceedingly difficult. We
shall, however, be able to throw some light upon this question, by solving and
discussing the following much simpler statical problem.

14. Let us consider a heavy cylindrical shell, whose cross section is a semicircle,
and which is suspended by means of vertical bands attached to its straight edges, so
that its axis is horizontal ; and let us investigate the state of strain produced by its
own weight.

In order to simplify the problem as much as possible, we shall suppose that the
displacement of every point of the middle surface lies in a plane perpendicular to the
axis, and we shall afterwards.investigate the stresses which must be applied to the
circular edges, in order to maintain this state of things. -

* [ This problem is of a similar character to that of a bar, whose natural form is circular, and which
has been discussed by Liaums. ¢ London Math. Soc. Proc.,” vol. 19, p. 365.-—June, 1890.]
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We have

Y= —gsingd, Z=gcos¢;

whence, if W = 2¢pah, the equations of equilibrium are

T,

7% + N, = Wsin ¢,

aN.

E;l—T2= — Weos ¢,

dG h? .

;ij—}- N = — §;Ws1nc/>;
from which we obtain

P,

W—}-Tz: 2W cos ¢,

the integral of which is
Ty=Acos¢ 4+ Bsing + Wesin ¢,

and, therefore,
N, = Asin ¢ — B cos ¢ — We cos ¢.

Since N, = 0 when ¢ =47, A= 0; also since T,=37W when ¢ = L=, B=0;
whence

Ty = W¢ sin ¢, Ny=—W¢pecosp . . . . . . (61),
and, therefore,

aG: ho.

-;l;l = Wa (¢ cos ¢ — 52 sin &),

whence

G, = Wa (¢ sin ¢ + cos ¢+§%cos ¢) + C.

Since G; = 0 when ¢ = 4 7, C = — §Wnra; accordingly

G1=Wa{¢sin¢+<1+é%)cos¢—%vr}. L. (62).
3 N2
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But
G=—40PF=—4n0(1+Ep . . . . . . (63),
whence
2l = 1+E{¢ smqﬁ-l—(l—l— >cos¢ 77}. ... (64).

Again, if R denote the change of curvature along a circular section, so that

e -2l

we have
p=R—EBoy/a . . . . . . . . . . (65)

Also by (18)
= — (2 4+ E)u/ E oy
® = ( + ):u‘/“"l"az dg?

and, therefore,

(1 + B)E &o,

F =+ E)p=—(1+E)@ + B+ IR0

H

whence, by the second of (44),

oy

e + 5 EW cos ¢.

T, = 4nh (1 + E) o, — 3 (1+E)(3+2E)M+23”7§ (1 + E)

Substituting the values of T, and p from (61) and (64), we obtain

onh (1 +E){202+7;]f‘2;§}+ (2 + 3E) {gbsmqﬁ—l—<l + 3 \cosqs —-lw}

-|— WcosqS We¢sin ¢ = 0.

This equation might, if necessary, be solved by successive approximation, but a
first approximation will be sufficient. Omitting the terms in A% and recollecting
that W involves 4 as a factor, we obtain

dnh (1 +E)oy+ W (cosp —37) + 3 EW (psing 4 cosp —Lm)=0 . (66),
whence from (64), (65), and (66), we obtain

E__I*_J_I_ Ba(§m—¢singd —cosp) (67)
oy @ VH{bm—cosp+ Lh(sw —psmp—cos )} - - - )
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Since the numerator of this fraction is an even function of ¢, it does not change
sign with ¢; also the numerator is always positive between the limits 7 and — L =,
and its maximum value occurs when ¢ = 0 and is equal to 2 7 — 1, and its minimum

value occurs when ¢ = % 7 and is equal to zero. We, therefore, see that when ¢ = 0,
R E 3o
oy @ T’
and when ¢ = 4 7,
R_E
o o

Since the thickness of the shell is supposed to be small compared with its radius, it
follows that the change of curvature is large compared with the extension of the
middle surface, except when o (3w — ¢) is comparable with %, <.e., in the neighbour-
hood of the straight edges of the shell ; and therefore at all points of the shell whose
distances from the edges are large in comparison with its thickness, the terms
depending upon the product of the change of curvature and the cube of the thickness,
v.e., the terms upon which the bending depends, are of the same order as the terms
depending upon the product of the extension of the middle surface and the thickness;
but at points whose distances from the edge are comparable with the thickness of the
shell, the extension of the middle surface is of the same order as the change of
curvature, and therefore the terms depending upon the product of the change of
curvature and the cube of the thickness are small in comparison with the terms
depending upon the product of the extension and the thickness.

We shall now calculate the stresses which must be applied to the circular edges in
order to maintain this particular kind of strain. From (43) we have

Gy = §0h® E (p + oy/a).

Substituting the values of u and o, from (62), (63), and (64), we see that the terms
in o, may be omitted, and we obtain

EW
G-'1+i(%7r—¢smgb-—<,os¢) SRR (68),
which shows that Gy is positive.
. Also
T, = dnh By — 20 B(2 + 3E)
1+Eq§sm¢ Ce e e (69),

which shows that T, is positive.
Comparing (68) and (69) with (61) and (62) we see that ratios of the tension
T, and the couple G,, to T, and G, are numerically equal to E/(1 + E); we further
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see that G, is negative, and, therefore, the strain tends to increase the curvature of
the circular sections, Now when a cylindrical shell is bent about a generating line in
such a manner that its curvature is increased, all lines parallel to the axis which lie
on the convex side of the middle surface will be contracted, whilst all such lines
which lie on the concave side will be extended, and this contraction and extension
will give rise to a couple about the circular sections which tends to produce anticlastic
curvature of the generating lines. In order to prevent this taking place it is necessary
to apply at every point of the circular edges a couple G, tending to produce synclastic
curvature, and a tension T, parallel to the axis, whose values are given by (68) and
(69). If this couple and tension were removed, the middle surface would bend about
its circular sections, and anticlastic curvature of the generating lines would be pro-
duced, and this would necessarily involve extension or contraction parallel to the axis,
so that the problem could no longer be treated as one of two dimensions.

It must, however, be within the experience of everyone that when a thin cylindrical
shell of finite length, whose cross section is the arc of a circle, is bent about its
generating lines, the shell does not assume a saddle-back form, and consequently the
anticlastic curvature of the generating lines must be so small as to be inappreciable.
This circumstance furnishes an additional argument in favour of the supposition that
the extension of the middle surface is only sensible in the neighbourhood of the free
edges.

We therefore conclude that if the circular edges were free, some extension or con-
traction of the middle surface must necessarily take place, but that this extension or
contraction is small compared with the change of curvature along a circular section,
except just in the neighbourhood of the edges. From these considerations the infer-
ence is, that if by means of proper constraints applied to the circular edges, a
cylindrical shell were enabled to execute the non-extensional vibrations discussed in
§ 13, the vibrations would cease to be non-extensional if the constraints were
removed ; but that the amplitudes of those portions of the displacements upon which
the extension depends, would be very small compared with the amplitudes of those
portions upon which the change of curvature along a circular section depends, except
just in the neighbourhood of the edges. Moreover, the theory of plane plates shows,
that the frequency of the extensional vibrations is expressible® by means of a series of
even powers of h, commencing with o term independent of h; whilst the frequency of
the flexural vibrations is expressible by means of a similar series commencing with h*.
It therefore follows, that the pitch of the notes arising from the former class of vibra-
tions, is high compared with the pitch of those arising from the latter class. And
although, except under special circumstances, it is not possible in the case of curved
shells whose edges are free, for these two classes of vibrations to coexist independently,
as in the case of a plane plate; yet recent investigations show, that the pitch of

* Lord Rayueies, ¢ London Math. Soc. Proc.,’ vol. 20, p. 225. See especially equations (38), (45),
and (53). :
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notes which mainly depend upon the extension is usually high in comparison with
the pitch of notes which mainly depend upon bending, and consequently the
notes arising from the former cause, both on account of the smallness of their
amplitudes and the highness of their pitch, would probably be so feeble in comparison
with those which arise from the latter cause, as to be scarcely capable of producing
any appreciable effect upon the ear. Judging from the usual course of such
investigations, the probable form of the exact solution of the problems suggested
at the end of §13 would be that of an infinite series, the periods of the different
components of which would satisfy a transcendental equation having an infinite
number of roots ; but the preceding considerations point to the conclusion that the
frequency of the gravest® note given by (60), viz., p® = 48mnh?/5pa* (m + n),
although perhaps not rigorously accurate, is a close approximation to the truth.

Spherical Shells.

15. The fundamental equations for a spherical shell can be investigated in precisely
the same manner as in the case of a cylindrical shell.

If «, v/, w' be the component displacements at any point of the substance of the
shell in the directions, 6, ¢, r, the equations connecting the displacements and strains
are

, 1
0'1—;
o'y = ; <si1110 % + ' cot 0 + w’)
, __dw
oy = |
’ L aw | @ v > (1,
' rsin@dp Tdr g
v 1
T2T T T e e
. "
m-'3=%<%%—v’cot0+ﬂ—:l'—9:%)J'

* [The experiments of Lord Rayreies, ‘Phil. Mag.,” Jan., 1890, show that the effective pitch of a
bell is usually not the same as that of its gravest tone; and, in the bells which he examined, the fifth
tone in order was the one which agreed with the nominal pitch of the bell.—June, 1890.]
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whence

du u 1 dw h
(H)==ti=0
1

dv . v dw
(E’>_ml+&_asiné;~h~]§ s - (2),
dw A
<é;>_17z+n—EK )
also
du\ @32 Ty 1 E dK h
<dr2>—<dr>+ o  a(m+n) d9+a ae

B _ (e m_ 1 A, B K
drt) " \dr @  a(m+n)sin¢ d¢+asin6 deé

(%) =35 —E0+n

e

(3)-

16. We can now obtain the equations of motion in terms of the sectional stresses.

If dS be an element of the middle surface whose coordinates are (o, 6, ¢), and
dS an element of a layer of the shell whose coordinates are (a 4 %/, 0, ¢), then
dS = (1 + ¥'Ja)® dS ; whence, if in the figure OA, OB respectively coincide with the
meridians and circular sections, we obtain by resolving parallel to OA,

b7 (Tla sin 0 8¢) 80 — Tya cos 0 80 8¢ + 5 (Mlob 86) 8¢ -+ Nya sin 0 80 8¢
= pdsf(:/ — X) (1 4+ Kfapdk . . (4).
But ,
o=k (G) + 502 (5

accordingly if we substitute the values of (du/dr) and (d?u/dr?) from (2) and (3), and
recollect that all quantities which vanish with 7 may be omitted when multiplied by
h®, the right hand side of (4) becomes

WE dK 4k dw ne
pdS{Qk(l—}- > L 3a2}z‘e“2h<1 +&~'72>X}

Resolving parallel to OB, OC, and then btaking moments about OA, OB, OC we
shall obtain in a similar way five other equations, which, together with (4), may be
written,
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& (T, sin ) — 0+@%“+N2m0

= {2h<1 -+ ;iz)u %E %% — gg%; — 2h (1 -+ %)X}pasin 0,
%-&%(Mﬁinﬂ)+M10036+N1sin0

= {2h <1 + ;é)v jé%’é %gi 3‘?2%(@ —;% — 25 <1 + %;) Y}pa sin 6,
% (N, sin 6) + % — (T, + Ty) sin 0 |

{%<b+_>w——ME@+M)-%EanMﬁ+§%z}mgna

d?+Nﬁmﬁ+@mﬁmm-mww

=%ph3<s11116 70 — 30 +2Y>sm0

d% (Gy sin 0) 4+ G, cos  — Ny sin 6 _}_da%

m@@-éqam%ma

(M, — M) — H, — H,=0.

465

r ()

17. We shall now (as in the case of a cylindrical shell) proceed to obtain the

values of the couples and the stresses M;, M, by direct calculation.
We have

.Tlaﬁnas¢==V}P%a4-k)gn03¢dw;

whence

T-—2MP+‘h3< >+9”<ﬁ> | ]

a*Q 283 [dQ
T._%Q+1MQW%+%<E>

M. =M d*s Qb Id
1 o = 2nhw + 3nh~"< 3>_|_ ’gs (%) X

, [/dQ\ | Q .
6= =300 {(3)+3]

s {(2)+]

w{(E)+ 7]

30

G,
H, =

— 9
H‘Z““ -3

MDCCOXC.-—A,

(6).
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The third and sixth of these equations satisfy the last of (5) as ought to be the case.
Also, employing our previous notation, we see that

Cy= =4 ($+3) G=4u(E+T) (
7).
= =B ) )

Since the couples are proportional to the cube of the thickness, it follows from the
fourth and fifth of (5) that the normal shearing stresses N;, N, are also proportioml
to the cube of the thickness, and, therefore, that the shearing strains arl, @, are
quadratic functions of /4 and %'

Employing our previous notation, the next thing is to calculate the quantities
N, p, N, @, p'. We have

do 1 /d*w E
d 1/ 1 d p E.
p=(0)= = elqaip Tt F ) =it b B,
_ (w2 dv __dw |
—'p"<d9«>_a2sin0<cowd¢"d0d§b> J

in which equations we have omitted all quantities which vanish with A, because
A, p, p occur in expressions which are multiplied by A%  Similarly

\___E B oK ’
)\——a—a()\—l-”) a® de?

, 2 B/ 1 &K dK

r= - -(; - ( +:“°)+a2<sng d¢2 CO’GG@) r (9)-
’ _ _#K

p= 60231116( t0 T de d4>> J

18. The variational equation may be written
W+ =8U+%L . . . . . . . . (10),

and we must now calculate the values of the four terms in it, and we shall begin
with W,

Since we may omit @', @'y, and may, therefore, write = for =, the potential energy
of any portion of the shell is

W= {[[1 [ tm) % (o — 1 (010 0's0s + o730} ] (1 + W) A3 (11)
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where the integration with respect to S extends over the middle surface of the portion
considered. Since

y=agw (G +ae () +

we obtain

5 (m 4+ n) J% ] A? (1 + B [a)*dl

i )0 (3 ) ()

4n? 2
= {h (1 + —2> (o) + 0 + A/20) 4+ TP (A 4 )
R (@) W) o @t tm)f L 2)
also
2n r ; /10 (1 + V/ja) dh' = 4nh (1 + & 1¥[a?®) o0y + & nh®\p
+ 3l oy ') + B g i) - . (13),
and

h
20 (0 + o) o (L eyl

= dnh (1 + 1 1%/a) {m x

+ o)} (o1 + 09)— $UWE(\ + )

16nh3

— 4 0l°E (o) + o) (N —I—p,)— EN+p)(or+oy) . . o . L (14);

lastly

—é—an (L Kja) dl = b (1 + 3 1%a) w + §nip 4 Jabdap’ + e mp  (15).

-

Substituting from (12), (13), (14) and (15) in (11), the value of W per unit of area
of the middle surface is,

W—2nh<1+ >{°'1 + 0y° + E (o) + 0o)° + § =}
+ 308 N+ p + EA A+ p) 4+ 4%

+ 3l AN + By + 3 wp)

+§1‘i(@m+aﬁ»+ @p) - - o (16)

30 2
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‘We must now obtain 8. We have

ST=p ([ (ow 480 + i 8w) (1 + WJap dif dS

also
fi WS (1 4 I o) AW = 2h<1 +2 >u8u 432 h%d“ = %hﬁ(ﬁ% + g-ii;su)
v
= 2k<1 + ; > o Su 4 ?Z(flg’ )(‘%ﬂf-— 8u>
PGS ) ) (B
y (2) and (3). Treating the other terms in a similar way, we obtain
ST = 2ph (1 + §#%/a?) [[ (i 8u + 7580 + b 8w) ds

dw ddw 1/.1 dw N/ 1 dow >
{5 ) )+ 2 ) -

+ E(EK - 319) SK} s

u dSK v dSK 1cZK 1 dK
+ 3 P73E”{ e ——w(O\ 4 8u) + - 0 +Zéfrf§dqb8

a asin 6 do
_(x+,L)8w}ds
_%Pfi”{—<%—u>8@+&<s1i6§i >sv+EK3w}ds L. ()

We must next find 863L.
‘We have

8%:[["](P'3u'+U'sv)( o 4 I)sin 0 dI d¢+ﬁ (Q 8 + U 8) (a + W) d df

+fN2asin08wd¢+leaswcze N L))

whence
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Gy dow H (1 ddw
ol = ‘HT]‘ du + M, 8v 4+ N, dw — 9 (waé - 8u> + - <s1r;é i$ 32})

2nh’ER dSK nlPEw dSK .
+ 3a  df T3 3a sin 6 d(})} sin 0 d¢p

G,/ 1 déw H, /déw
—{—HM18u—|—T28v+N18w+ » <sﬂ 0% — &v >_--a <7d7—8 >

207 EAB dSK | nh*Fw dSK
3a sin 0 d(j;‘ + 3a  db }Ob dg . . . (19).
Lastly,

5U =] j: (X80 + Y 80 4 Z8u) (1 + fo Al
- 2ph<1 + ;;>”(X8u Y Su + Z Sw) dS
+ 3P ([{7 05 + g g — A s

4pl? ddw Y/ 1 ddw
Y ”{ < a0 8u> +, @ <sm 4 d¢ 8v> + ZE SK}OZS < (20)-

19. We shall,-as in the case of a cylindrical shell, denote the four lines of W by W,
W,, W3, W,. Whence

SW, = anh (1 + 37/08) [ [ (@5a, + B0, + 4 wd) dS
= 4nh<1 + ?)i:é){[(sasu +iwd)asinfdg+ (@8 +iwdu)a dﬁ}

— 4nh<1 + ZI%>”{{C—;%(@ sin ) — Wcos 0+ % d¢}

+ {‘?: ! olé (w sin 0) + & = cos 0}8@ — (& + 38) sin 68“’1“0“901‘75 (21),

from which we obtain the approximate equations

T, = 4nh@A, T, = 4nh33
: . (22),
M, = M, = 2nhw

. 2n h
pu:asma{ (A sin 6) — 330080+2d¢}+pX

.o 2, dgﬁ . .
Pv:ﬁiﬁ—é {71;5 + —%gzg(msm 0) 4+ 4 = cos 0} +pY >. . . (23)
pio = — 2 (@ + B) + pZ
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470 MR. A. B. BASSET ON THE EXTENSION AND FLEXURE OF

These are the equations which have been obtained by Mr. Love,* and which have
been employed by him in discussing the extensional vibrations of a spherical shell.
Again

SW, = 4 b [ (60N + 43y + § pp) .
Substituting the values of A, u, p from (8) we obtain

[[Eonis = — ([ {‘”@” + Sw + E(‘““ + égb%’iwu ot 6’+28w>}> sin 040 d¢

= — [{EJE sin u — 7 (ﬁ sin 0) dw + 3£ sin 9-~} dp — fEiESv de

+”|:Its1n9—8 +E—¢8

{dm (% sin 0) + (1 + 2E) % sin 9} Sw] 0 dg (24),

”:FS/L as == ”d? {T’““ 9“—* + 8w sin 0

+ E <d8u i + 4) " 1 Su cos 0 4 28w sin 0>} df de

— | (E4F sin 08u + 4F cos 6dw) d¢

1 ci_ﬁ JF ddw
- (E‘ﬂ’&) " sin @ wqf) w+ sin @ d¢> a0

f— G

+ ”|:Esm0 fSu—I—Ld:gSv

—~ {sii e%{% — & (# cos 6) + (1 + 2B) & sin 9} 8@0:] a9 dg (25).

In the last term p 8p, we must treat the integral which involves d*$w/df d¢ exactly
in the same way as in the corresponding case of a cylindrical shell, and we shall thus
obtain

%”pSpdS:”p(ctﬁ-d%v gaiz>d9d¢ |
4[5 3 =55 d+ [{(peovo + 4 35) b0~ 1p G} a0

[j(cotadi+d‘;;¢)3wd9d¢ N To)

* ¢ Phil. Trans.,” A, 1888, p. 527. Equation (23) corresponds to Love’s equations (46), (47), and (48)
and (22) to (72).
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Adding (24), (25), and (26), we finally obtain

sw-—%-’f—j[ (B+E(E + )} ou—1 p80+s~l—ﬁ{ (%5 sin 6) — 4 cos 0
+ 450} b0 — % (G — o) — bp (55 5 — 80) | @ sin 08
+ 5 |~ hwsu— (F+EGE+ )00+ g (T 4 poos0+dsin 0 ) bw
— 8 (g or =) — 1o (G — 8u)|ads
44 h”[Es1n0d0(¥E+;ﬁ)8u+E 75 (B + ) 80
_{Sgﬁ(qzsinapr(1+2E)(1e+§)sma+ 19(2;2; o (8 cos )

+2(L+E) 4 sin 0+ cot 8 ¢+d9d¢} Sw]dﬁdqs 7).

The expressions for W,, W, may, as in the case of a cylindrical shell, be divided into
two parts W', W3”, W/, W,”. The values of 8W, 8W,, may at once be written
down from (21) by changing @, 33, = into ¥&', 4, p’ and I, 4F, p respectively, and
by altering the coefficient into & nA® and 8nh®/3a respectively. With regard to Wy”
we have

SW," = -‘g—nm”(@c SN 4+ 28 8 + L w Op) dS.
Substituting the value of N from (9) and integrating once by parts, we shall obtain
[[asvas =@ Fsin0ag
— ”[Ed%(min 0)LoX 4 @asin 0125\ + B 3\ + 3,,,)}}40@.

Treating the other terms in a similar manner, we shall finally obtain

SV, = f {2nh3E{a dSK . nhiEw d SK} 4 sin 0.dg

3a  do +3as1n€ d¢
3 3
+]’{2nhE%d8K nhadSK}ada

3asind d¢ 3a do
2nh? ISK
~ 3a® ”Lm&{ (A sin ) — Wcos 0 4 % ¢}
(0 w55 R+ 0]
- 4;”-& [[@o + 288u + L wdp)as.
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472 © MR. A. B. BASSET ON THE EXTENSION AND FLEXURE OF

If in the first surface integralin this equation we substitute the approximate values
of the coeflicients of d 6K /df &c. from (23), which we may do since this integral is
multiplied by A%, and then substitute the values of §W,", 8@, 8, and 8U in (10), it
will be found that all the terms involving d 8K/dd, d 6K /d¢p, and S\ + u cut out ;
we are therefore no longer concerned with them, and the value of §W,” reduces to
the last line ; on this understanding we may write

5W“+3W1~=f@f|(gaswraasmu Ladp)dS . . . (28).

The variation of the right-hand side of (28) might at once be written down from
(27) by substituting @, 33, and = for I, 4F, and p; but it will be more convenient
to present the results in another form. Taking the first term, and integrating the
second differential coefficients once by parts, we obtain

d dw

[[asnds = — [@ )" sin 0d¢+”{» (@sin )"0 —

@ sin 0 dw
— E@asin 0 SK} df de.

Treating the other terms in a similar way, and adding to the result from (21) that
portion of 6W, which depends upon 4% and finally replacing the coeflicients of
d dwjdf — du, &c., by their approximate values from (28), the final result will be

4nh5 d8w 1 clSw .
) f{@< Su) 4 gm-(sme s 8@)} a sin Odd
dnh? 1 dow ddw

= {8 By — %)+ 4 (g — 0w} aat

# = (=) + 6= o)

+ Ba (i — Z) 3 K} s (29).

This result enables us to test the accuracy of a portion of our work, and the funda-
mental hypothesis on which the theory is based; for if we substitute in (10) the
expression (29), and also the value of 83 from (19), it will be seen that we have
reproduced the values of the couples which are given by (7) ; also comparing with &3,
the line integral parts of 8W,, given by (27), the line integral parts of W3 and W,
which, as we have explained above, are obtained from (21) by changing certain letters,
we see that we have also reproduced the values of M,, M,, given by the third of (6).
We may, therefore, omit the couple terms, and also the terms in M; also, since we
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have disposed of the terms in 8W,, which involve %%, we shall write W,  for the
remaining portion which depends upon %, and the variational equation finally
becomes

SW 4 W, + 8W, + 8W, + 20k (1 + 3 4%/a?) ﬂ (u Su + v 8v + w Sw) dS
+%Ph3,”{ <‘$ -2 ><dd86 8u>+;1;2<sii05%—-2.v> (Sliedj;” 8”)

+E< K—~)SK}ds

1dK

+ 3ok [ {~ 5 su + ;{s}n’o‘ s So— (X + 1) aw}ds

4””"”{ (‘j;(; > 1(@%—5)3%1&1{8@0}018'
=2ph<1 +£—2>jﬁj‘<X8u+Y8v+28w>dS
2;:;3”{X<djw >+Y(Sli6‘?;” >+ZEa8K}dS
+ [ (Ty8u+ Nydw) asin0dp+ ((Ty0+ N, dw)add . . . . . . (30)

We have now got rid of all the terms involving the second differential coefficients
of du, dv, dw ; and all that remains to be done is to integrate by parts the terms which
involve the first differential coefficients. Putting

T dw .. 1 dw .. .. .. '
a =" —2u+X, ﬁ:m—ﬁ— W+Y, y=E@EK—w+2) (31),
we have
200 ddw B ddw
3a? ”{ ¥zl + oo sin @ d¢> + OL'ySK}dS
=222 (ySu + adu) asin 6 + > —j (v + BSw) add
2ph3

_%—“’[{ (ysin) — ycos9}8u+d¢8v+{ e(asmﬁ)-{-——‘— ,.,'ysmﬁ}Sw] nSG (32).

Substituting the values of §W,’, §W,/, SW,, §W,/, and the right hand side of (32)
in (30), and picking out the line 1ntegra,l terms, we obtain the following equauons
for the sectional stresses, viz.,

MDCCCXC,—A., 3P
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= 4nh @& + % (I —E(B+ )} + 2 b’ +“Ph E(eEK — w +2)

EN

M, = 2nhe + ‘g; P+ §akp

| Ll 1 ) 2003 /d
el g4 (i

N 2 g d0
Gy, = § 0 (& + A/a)
H) = — 30l (p + =/a)

- (33)

which give the values of the sectional stresses across a parallel of latitude ; and

3
M, = 2nhw 4 zi}ip + Lahsy’ 2

T, = 4nhd + T — E(E + 4)} + 3 b & + 20 B (aEK —io+2)

Ak (g 21 [ 1 i - - (34)
N1_3asin€<¢+pcosﬂ+93m0 >+ ™ (m@—-Zv+Y>
Gy = — $ 0l ( + /o)
H, = 37k (p + =/a) J

which give the values of the sectional stresses across a meridian.
In these equations we may, if we please, substitute the approximate values of
u, v, w from (28), and by means of these values it can be shown that the values of

Ny, Ny agree with the values which are obtained by substituting the values of the
couples in the fourth and fifth of (5).

Picking out the coefficients of 8w, dv, Sw, in the surface integrals, we obtain the
equations of motion, which are

[ N g REAK 4y ”
L2(\1+ / u 4 5 20 a7 a0 2 1--}—3002 Xt pa sin 0

:47@{——(ﬁsin 0)—;300804—%2—:}

-—%—ESIILH_(’;E"I—.&) 3nh2{j9( ,Sine) d?CO%g—i‘zd(P}

+8g67:2{d0(35sm0) d}cosﬁ-l—é;li}_l_izpt{ k1n0+ s1n0—ycos€}(35),
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h? WE dK 48 dw e :
{ <1+ > +3asin0d¢ )@29111021745 2<1+3(09>Y} pe sin 0

=4n{d¢—|— 55 (@sind) + 3 wcosﬂ}

_ 4nh (355 + &)+ 3 nh2{ J} 2d0 (p sin 0) 4 1 p’ cos 0}
nh?
+83a {d“g—l—l e(psm 9)"" 5 P CO8 0}+——<B 0+d¢> o (36)

{2(1 +;L;> (%b—Z)—%-hﬂE(x—H;)—%@Ek}pasina

= — 4n (A + B)sin 0 + 1 { o (& sin ) + (1 + 2E) (& + ) sin 0

1 &f d a’p
+s1n0 d¢2— 9(:‘?0080)4—001;0 ¢+d0d¢}
—%nk"'(iﬁ'+dj‘-’)sin0——g‘—[(iE+:!?)Sin9

2ph {jo( me)-g_ 2'ysin9}. N 74 )

The correctness of these equations may be tested by substituting the values of the
sectional stresses from (33) and (84) in the first three of (5), when it will be found
that we shall reproduce (85), (86), and (87).

20. The boundary conditions for a spherical shell may be investigated in exactly
the same manner as in the case of a cylindrical shell, by means of SToxEs’ theorem ;
for in the present case the theorem may be written

(G4 155 o (g 30+ ) a0 = o,

the integration extending round any curvilinear rectangle bounded by two meridians
and two parallels of latitude. If, therefore, in the figure we apply to the side AD
the stresses,

1 dJd
. /] V4 —_ bt ’ 7’ .
My = H'/a, N, T asing d¢ ’ Hy = H';
to the side BD the stresses _
4
er_: H'/a, N11= %@%‘_, Hzl I H/;

and to the sides OB, OA, corresponding and opposite stresses respectively, the
preceding integral becomes
3 p2
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{{Mz’ v+ Ny dw + %‘-' <;1i0 d;;” — 8@)} o sin 0 deé

’ ’ HEI ds
+ HM1 Su + Ny 8w — 2 <_075_1{_ 8u>}owl0= 0,

which shows that the work done by this system of stresses is zero.

If, therefore, we suppose that the rectangle OADB, instead of being under the
action of the remainder of the shell, is isolated, and that its state of strain is
maintained by stresses applied to its edges, then it follows that if instead of the
torsional couples H,, H,, due to the action of contiguous portions of the shell, we
apply torsional couples 38,, 3),, where

;ﬁ?lzﬂl—l—H' e e e (38),
W= H,— T . . . . . . ... (39)

the state of strain will remain unchanged, provided we apply in addition the stresses

=M, + Ha ‘L
ar’

_ 1 N C10))
ﬁz——Nz_kasin@-dEJ :
and A
ml = Ml + H, o
_ Eﬁ’ Ce e e e e e (41),‘
ial - N] a do

whence eliminating H' between (38) and (40), and between (39) and (41) respectively,
we obtain

Jﬂaz‘” — ) =My — H,

) d . dH Coe L (42)
ﬁﬁsm()—-%:Nzasm@—gj (42)
and
o + By = Mo + H,
d dH B %
P+ BN 42)
in which we are to remember that 3, = — #,, and H, = — H,,

In these equations the Roman letters denote the stresses due to the action of
contiguous portions of the shell, whilst the Old English letters denote the values of
the actual stresses applied to the boundary. If, therefore, the shell consists of a-
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portion of a sphere bounded by two meridians and two parallels of latitude, and
whose edges are free, the boundary conditions along a parallel of latitude are obtained
by equating the right hand sides of the first and fourth of (38) and of (42) to zero ;
whilst the boundary conditions along a meridian are similarly obtained by equating
the right hand sides of the first and fourth of (34) and of (43) to zero.

21. If the shell is supposed to vibrate in such a manner, that its middle surface
does not experience any extension or contraction throughout the motion, the equations
of motion can be obtained by taking the variation subject to the conditions of
inextensibility, and introducing indeterminate multipliers.

22. It will now be convenient to make a short digression for the purpose of con-
sidering some of the quantities involved.

Let P be any point on the deformed middle surface whose undisplaced coordinates
are (@, 0, ¢). The coordinates of P after deformation are

R=a+4w, 0 = 0 + u/a, (I>=¢+v/asin9 Coe . (49),

and since u, v, w are functions of 6 and ¢, the elimination of the latter quantities from
(44) will give a relation between R, ®, ®, which is the equation of the deformed
middle surface. :

If p, be the radius of curvature at any point of a meridian section after deformation,
and P the perpendicular from the centre on to the tangent at that point to the

deformed section,
d

)

|

5| =
&.
=

1_
P1

L= Llie ()
= 1%5{1 + & (fd—%:/gz;;dﬁ)z}’

Now

and therefore, neglecting cubes of displacements,

1 /dw\?

P::a-l—w—é;(”dé)
Also
' duw

dR:Z%db’,

whence

1 1 1 /dPw '

;;"a=‘;5<d_e’2‘+w> L (45),

which gives the change of curvature along a meridian.
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We shall now find an expression for the change of curvature along any great circle
which makes an angle y with a meridian.

In the figure on p. 463 join OD, and let the angle OED = x, and the angle
DOA = v ; then by (45) the change of curvature along OD is

1 /d*w
T <dx +w>'

If w4 &w be the normal displacement at D, it follows by equating the two values
of 8w that

d
“’sxhd 8¢ = 59 4 20 8q5+l<0—l—9;862+2d6d¢808¢+d¢28¢2> (46).

From the spherical triangle ODP we have

cos PD ~ cos 6 cos &y

T8y = sin @ sin 8y ’
whence
sin @ 60 = cosy sin 6 8y + 4 cos 0 Sy* — 4 cos 6 36°
= cos y sin 6 8y + 3 cos fsin®y Sy
Again
sindp ___ siny
sindy — sin (4 + 86)°
whence
siny
0 = 5 (8x — cot fcos y 8x?).

Substituting these values of 80, 8¢ in (46) and equating coefficients of 8x2, we
obtain ‘

dw _ sinfydw | sin2y dw o @w  sin2ycosf dw 9
dX sm2 (7] d¢2 sin @ d@dd + cos’y de® ~  sin®@ d¢ + sin y cot 9 (47)-

Whence it follows, that if p;, p, are the principal radii of curvature along and
perpendicular to a meridian

1 1 1 /dPw

;,:—;——;a(ﬁJf@ 1 )
11 1/1 @w :
pe @ a2<bm20d<[)2+ t0 +w)Jl
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- 23. When the middle surface is inextensible, it has been shown by Lord RAavLuiga*
that the displacements are given by the equations

= —3A,e*sin 0 tan* % 0 » 1

v= SA,e*sinf tan’ L 6 (49).
w=  3A,e?*(s+ cos ) tan’} 0
wheres = 2, 3,4 ... and A, is a complex function of the time. From these equations
it can easily be shown by means of (48) that
1_1_ _gA@=gertargo __(}1_1) 50).
p a a sin? 0 Py

The value of the potential energy is given by the second line of (16); also by the
first two of (8) and by (48)

1 1
A=— = ——= .. 51

o= o a ( )’

and by the last of (8)
o A —s)edtanc L 0
p=-= 2z a sin? 6 ’
whence
dnk . . p

W= S (63 A, (5 — 8) coss tan' 4 0 + (3 A, (5 — ) sinsp tan' } 03] (52),

which agrees with Lord RAYLEIGHS result.

Let us now suppose that a bell which consists of a spherical shell, bounded by a
small circle whose latitude is 37 — «, is vibrating in such a manner that its middle
surface does not undergo any extension or contraction throughout the motion. One
of the boundary conditions requires that the flexural couple G, should vanish along
the circle of latitude which constitutes the free edge of the bell. By (7) and (51)

G, = 4 nhE = $nh* (L + E(\ + )}

~gur(L 1),

Py

From (50) we see that G, cannot vanish for any value of 0 except § = 0, that is,
at the pole, provided s > 2. It, therefore, follows that a spherical bell whose edge is
free cannot vibrate in this manner if the middle surface is supposed to remain
absolutely inextensible throughout the motion. If, however, extension or contraction

* ¢ London Math. Soc. Proc.,” vol 13, p. 4 (1881).
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480 ON CYLINDRICAL AND SPHERICAL THIN ELASTIC SHELLS.

were to take place in.the neighbourhood of the edge, it would be possible for G, to
vanish there, and also to satisfy the other boundary conditions.

There seems no reason to doubt that the argument which has been employed in the
case of a cylindrical shell, would apply equally to the case of a spherical shell, and
probably also to a shell of any shape; in which case, the portions of the displace-
ments upon which extension principally depends, would be small compared with the
portions upon which bending principally depends, except at points whose distances
from a free edge are comparable with the thickness. At the same time it would
be very desirable to obtain the solution of some problem relating to the vibrations
of a shell whose edges are free, in which no supposition is made as to the relative
magnitudes of the extensional and flexural terms.
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